skip to main content


Search for: All records

Editors contains: "Gilbert, Jack A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gilbert, Jack A. (Ed.)
    ABSTRACT Biological soil crusts (biocrusts) are widespread in drylands and deserts. At the microhabitat scale, they also host hypolithic communities that live under semitranslucent stones. Both environmental niches experience exposure to extreme conditions such as high UV radiation, desiccation, temperature fluctuations, and resource limitation. However, hypolithic communities are somewhat protected from extremes relative to biocrust communities. Conditions are otherwise similar, so comparing them can answer outstanding questions regarding adaptations to environmental extremes. Using metagenomic sequencing, we assessed the functional potential of dryland soil communities and identified the functional underpinnings of ecological niche differentiation in biocrusts versus hypoliths. We also determined the effect of the anchoring photoautotroph (moss or cyanobacteria). Genes and pathways differing in abundance between biocrusts and hypoliths indicate that biocrust communities adapt to the higher levels of UV radiation, desiccation, and temperature extremes through an increased ability to repair damaged DNA, sense and respond to environmental stimuli, and interact with other community members and the environment. Intracellular competition appears to be crucial to both communities, with biocrust communities using the Type VI Secretion System (T6SS) and hypoliths favoring a diversity of antibiotics. The dominant primary producer had a reduced effect on community functional potential compared with niche, but an abundance of genes related to monosaccharide, amino acid, and osmoprotectant uptake in moss-dominated communities indicates reliance on resources provided to heterotrophs by mosses. Our findings indicate that functional traits in dryland communities are driven by adaptations to extremes and we identify strategies that likely enable survival in dryland ecosystems. IMPORTANCE Biocrusts serve as a keystone element of desert and dryland ecosystems, stabilizing soils, retaining moisture, and serving as a carbon and nitrogen source in oligotrophic environments. Biocrusts cover approximately 12% of the Earth’s terrestrial surface but are threatened by climate change and anthropogenic disturbance. Given their keystone role in ecosystem functioning, loss will have wide-spread consequences. Biocrust microbial constituents must withstand polyextreme environmental conditions including high UV exposure, desiccation, oligotrophic conditions, and temperature fluctuations over short time scales. By comparing biocrust communities with co-occurring hypolithic communities (which inhabit the ventral sides of semitranslucent stones and are buffered from environmental extremes), we identified traits that are likely key adaptations to extreme conditions. These include DNA damage repair, environmental sensing and response, and intracellular competition. Comparison of the two niches, which differ primarily in exposure levels to extreme conditions, makes this system ideal for understanding how functional traits are structured by the environment. 
    more » « less
  2. Gilbert, Jack A. (Ed.)
    ABSTRACT Host association—the selective adaptation of pathogens to specific host species—evolves through constant interactions between host and pathogens, leaving a lot yet to be discovered on immunological mechanisms and genomic determinants. The causative agents of Lyme disease (LD) are spirochete bacteria composed of multiple species of the Borrelia burgdorferi sensu lato complex, including B. burgdorferi ( Bb ), the main LD pathogen in North America—a useful model for the study of mechanisms underlying host-pathogen association. Host adaptation requires pathogens’ ability to evade host immune responses, such as complement, the first-line innate immune defense mechanism. We tested the hypothesis that different host-adapted phenotypes among Bb strains are linked to polymorphic loci that confer complement evasion traits in a host-specific manner. We first examined the survivability of 20 Bb strains in sera in vitro and/or bloodstream and tissues in vivo from rodent and avian LD models. Three groups of complement-dependent host-association phenotypes emerged. We analyzed complement-evasion genes, identified a priori among all strains and sequenced and compared genomes for individual strains representing each phenotype. The evolutionary history of ospC loci is correlated with host-specific complement-evasion phenotypes, while comparative genomics suggests that several gene families and loci are potentially involved in host association. This multidisciplinary work provides novel insights into the functional evolution of host-adapted phenotypes, building a foundation for further investigation of the immunological and genomic determinants of host association. IMPORTANCE Host association is the phenotype that is commonly found in many pathogens that preferential survive in particular hosts. The Lyme disease (LD)-causing agent, B. burgdorferi ( Bb ), is an ideal model to study host association, as Bb is mainly maintained in nature through rodent and avian hosts. A widespread yet untested concept posits that host association in Bb strains is linked to Bb functional genetic variation conferring evasion to complement, an innate defense mechanism in vertebrate sera. Here, we tested this concept by grouping 20 Bb strains into three complement-dependent host-association phenotypes based on their survivability in sera and/or bloodstream and distal tissues in rodent and avian LD models. Phylogenomic analysis of these strains further correlated several gene families and loci, including ospC , with host-specific complement-evasion phenotypes. Such multifaceted studies thus pave the road to further identify the determinants of host association, providing mechanistic insights into host-pathogen interaction. 
    more » « less
  3. Gilbert, Jack A. (Ed.)
    ABSTRACT Whether a microbe is free-living or associated with a host from across the tree of life, its existence depends on a limited number of elements and electron donors and acceptors. Yet divergent approaches have been used by investigators from different fields. The “environment first” research tradition emphasizes thermodynamics and biogeochemical principles, including the quantification of redox environments and elemental stoichiometry to identify transformations and thus an underlying microbe. The increasingly common “microbe first” research approach benefits from culturing and/or DNA sequencing methods to first identify a microbe and encoded metabolic functions. Here, the microbe itself serves as an indicator for environmental conditions and transformations. We illustrate the application of both approaches to the study of microbiomes and emphasize how both can reveal the selection of microbial metabolisms across diverse environments, anticipate alterations to microbiomes in host health, and understand the implications of a changing climate for microbial function. 
    more » « less
  4. Gilbert, Jack A. (Ed.)
    ABSTRACT Humans are inextricably linked to each other and our natural world, and microorganisms lie at the nexus of those interactions. Microorganisms form genetically flexible, taxonomically diverse, and biochemically rich communities, i.e., microbiomes that are integral to the health and development of macroorganisms, societies, and ecosystems. Yet engagement with beneficial microbiomes is dictated by access to public resources, such as nutritious food, clean water and air, safe shelter, social interactions, and effective medicine. In this way, microbiomes have sociopolitical contexts that must be considered. The Microbes and Social Equity (MSE) Working Group connects microbiology with social equity research, education, policy, and practice to understand the interplay of microorganisms, individuals, societies, and ecosystems. Here, we outline opportunities for integrating microbiology and social equity work through broadening education and training; diversifying research topics, methods, and perspectives; and advocating for evidence-based public policy that supports sustainable, equitable, and microbial wealth for all. 
    more » « less
  5. Gilbert, Jack A. (Ed.)
    ABSTRACT Small subunit rRNA (SSU rRNA) amplicon sequencing can quantitatively and comprehensively profile natural microbiomes, representing a critically important tool for studying diverse global ecosystems. However, results will only be accurate if PCR primers perfectly match the rRNA of all organisms present. To evaluate how well marine microorganisms across all 3 domains are detected by this method, we compared commonly used primers with >300 million rRNA gene sequences retrieved from globally distributed marine metagenomes. The best-performing primers compared to 16S rRNA of bacteria and archaea were 515Y/926R and 515Y/806RB, which perfectly matched over 96% of all sequences. Considering cyanobacterial and chloroplast 16S rRNA, 515Y/926R had the highest coverage (99%), making this set ideal for quantifying marine primary producers. For eukaryotic 18S rRNA sequences, 515Y/926R also performed best (88%), followed by V4R/V4RB (18S rRNA specific; 82%)—demonstrating that the 515Y/926R combination performs best overall for all 3 domains. Using Atlantic and Pacific Ocean samples, we demonstrate high correspondence between 515Y/926R amplicon abundances (generated for this study) and metagenomic 16S rRNA (median R 2 = 0.98, n  = 272), indicating amplicons can produce equally accurate community composition data compared with shotgun metagenomics. Our analysis also revealed that expected performance of all primer sets could be improved with minor modifications, pointing toward a nearly completely universal primer set that could accurately quantify biogeochemically important taxa in ecosystems ranging from the deep sea to the surface. In addition, our reproducible bioinformatic workflow can guide microbiome researchers studying different ecosystems or human health to similarly improve existing primers and generate more accurate quantitative amplicon data. IMPORTANCE PCR amplification and sequencing of marker genes is a low-cost technique for monitoring prokaryotic and eukaryotic microbial communities across space and time but will work optimally only if environmental organisms match PCR primer sequences exactly. In this study, we evaluated how well primers match globally distributed short-read oceanic metagenomes. Our results demonstrate that primer sets vary widely in performance, and that at least for marine systems, rRNA amplicon data from some primers lack significant biases compared to metagenomes. We also show that it is theoretically possible to create a nearly universal primer set for diverse saline environments by defining a specific mixture of a few dozen oligonucleotides, and present a software pipeline that can guide rational design of primers for any environment with available meta’omic data. 
    more » « less
  6. Gilbert, Jack A. (Ed.)
    ABSTRACT Many commensal bacteria antagonize each other or their host by producing syringe-like secretion systems called contractile injection systems (CIS). Members of the Bacteroidales family have been shown to produce only one type of CIS—a contact-dependent type 6 secretion system that mediates bacterium-bacterium interactions. Here, we show that a second distinct cluster of genes from Bacteroidales bacteria from the human microbiome may encode yet-uncharacterized injection systems that we term Bacteroidales injection systems (BIS). We found that BIS genes are present in the gut microbiomes of 99% of individuals from the United States and Europe and that BIS genes are more prevalent in the gut microbiomes of healthy individuals than in those individuals suffering from inflammatory bowel disease. Gene clusters similar to that of the BIS mediate interactions between bacteria and diverse eukaryotes, like amoeba, insects, and tubeworms. Our findings highlight the ubiquity of the BIS gene cluster in the human gut and emphasize the relevance of the gut microbiome to the human host. These results warrant investigations into the structure and function of the BIS and how they might mediate interactions between Bacteroidales bacteria and the human host or microbiome. IMPORTANCE To engage with host cells, diverse pathogenic bacteria produce syringe-like structures called contractile injection systems (CIS). CIS are evolutionarily related to the contractile tails of bacteriophages and are specialized to puncture membranes, often delivering effectors to target cells. Although CIS are key for pathogens to cause disease, paradoxically, similar injection systems have been identified within healthy human microbiome bacteria. Here, we show that gene clusters encoding a predicted CIS, which we term Bacteroidales injection systems (BIS), are present in the microbiomes of nearly all adult humans tested from Western countries. BIS genes are enriched within human gut microbiomes and are expressed both in vitro and in vivo . Further, a greater abundance of BIS genes is present within healthy gut microbiomes than in those humans with with inflammatory bowel disease (IBD). Our discovery provides a potentially distinct means by which our microbiome interacts with the human host or its microbiome. 
    more » « less